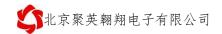


DAMT3232M 采集卡说明书 V1.0



北京聚英翱翔电子有限责任公司 2020年9月

月 录

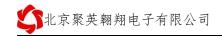
一,	产品特点	1
_,	产品功能	1
三、	版本说明	1
四、	主要参数	1
五、	接口说明	2
	1、引脚说明	2
六、	通讯接线说明	
	1、RS485 级联接线方式	4
	2、RS232 接线	4
七、	输入输出接线	4
	1、开关量接线示意图	4
	2、继电器接线说明	4
	3、模拟量接线示意图	6
八、	测试软件说明	
	1、软件下载	7
	2、软件界面	7
	3、通讯测试	
	4、模拟量数据输入说明	
	5、模拟量数据输出说明	
九、	参数及工作模式配置	
	1、设备地址	
	2、波特率的读取与设置	
	3、工作模式	
	4、闪开闪断功能及设置	
十、	开发资料说明	
	1、通讯协议说明	
	2、Modbus 寄存器说明	
	3、指令生成说明	
	4、指令列表	
	5、指令详解	
	-、常见问题与解决方法	
	L、技术支持联系方式	
松州	- 下栽	28

一、产品特点

- 可外接组合式 32 路继电器;
- 可外接拓展式开关量输入,模拟量输入
- RS485 通讯光电隔离,输入光耦隔离,继电器输出触点隔离;
- 可同时支持多种通讯接口:
- 可选型 485 主站设备,外接数个传感器不占用 AI 接口;
- 支持标准 Modbus RTU/TCP/ASCII 协议
- 具有闪开、闪断功能,可以在指令里边带参数、操作继电器开一段时间 自动关闭;
- 可以设置 0-255 个设备地址,通过软件设置。

二、产品功能

- 16路板载开关量(5-24V),可拓展16路;
- 32 路拓展继电器输出;
- 16 路 12 位分辨率模拟量电压输入; (可通过外接模块扩展成 32 路)
- 2路12位分辨率模拟量隔离输出
- 支持波特率: 2400,4800,9600,19200,38400,115200(可以通过软件修改, 默认 9600);

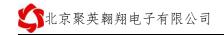

三、版本说明

版本	定时功能	联动模式	模拟量阈值	485传感器
DAM3232 普通版				
DAMT3232M 自控版	•	•		
DAMT3232M 主站版				

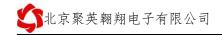
- ①、普通版:
- 设备默认输入和输出之间为互相独立,没有关系。
- ②、智能自控版:
- 定时控制----年月日时分秒自定义设置时间控制,可循环;
- 输出互锁----自定义输出通道与输出通道之间的互锁关系;
- 开关量联动----手动开关或开关量触发设备与控制输出联动;
- 模拟量自动控制----自定义模拟量上下限阈值,触发后自动控制:
- 场景控制-----自定义完整的逻辑控制触发条件;
- 70 组规则设定----多达 70 组规则条件设定,满足各种逻辑要求。
- ③、主站通讯版:
- 在智能自控基础上增加 485 主站通讯功能,可同时接多路传感器;

四、主要参数

参数	说明
触点容量	10A/250VAC 或30A/250VAC 或50A/250VAC
耐久性	10万次
数据接口	RS232、RS485、网口(可选 WIFI、4G、USB)
额定电压	DC 24V

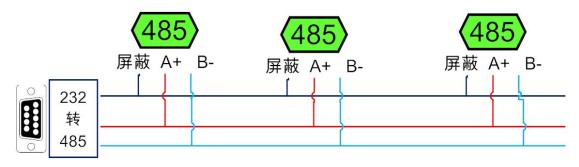

电源指示	1路红色 LED 指示 (通讯时闪烁)			
温度范围	工业级,-40℃~85℃			
尺寸	250*110*65mm			
重量	435g			
默认通讯格式	9600, n, 8, 1			
波特率	2400,4800,9600,19200,38400,115200			
软件支持	配套配置软件、控制软件; 支持各家组态软件; 支持 Labviewd 等			

五、接口说明



1、引脚说明

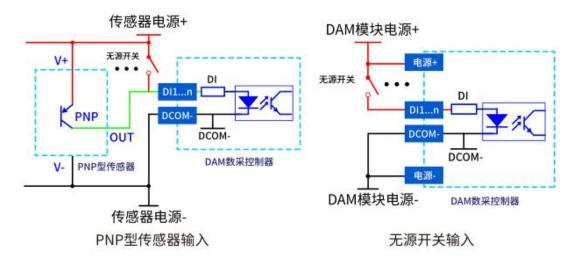
功能	序号	引脚	说明			
供电 DC24V	1	_	电源正极			
	2	+	电源负极			
	3	CANL	CAN 总线 L 接口			
	4	CANH	CAN 总线 H 接口			
	5	485B2	485通讯 B 接口			
通讯	6	485A2	485通讯 A 接口			
	7	485B1	隔离485通讯 B 接口			
	8	485A1	隔离485通讯 A 接口			
	9	PB1	隔离485屏蔽接口			
	10	ACOM-	模拟量输入信号负			
	11	AI1	第一路模拟量输入信号正			
	12	AI2	第二路模拟量输入信号正			
AI(模拟量	13	AI3	第三路模拟量输入信号正			
输入)	14	AI4	第四路模拟量输入信号正			
	15	AI5	第五路模拟量输入信号正			
	16	AI6	第六路模拟量输入信号正			
	17	AI7	第七路模拟量输入信号正			


	18	AI8	第八路模拟量输入信号正		
	19	AI9	第九路模拟量输入信号正		
	20	AI10	第十路模拟量输入信号正		
	21	AI11	第十一路模拟量输入信号正		
	22	AI12	第十二路模拟量输入信号正		
	23	AI13	第十三路模拟量输入信号正		
	24	AI14	第十四路模拟量输入信号正		
	25	AI15	第十五路模拟量输入信号正		
	26	AI16	第十六路模拟量输入信号正		
	27	ACOM-	模拟量输入信号负		
	32	AO-	模拟量输出负极(与2脚相通)		
40 (III lot E	31	A01	第一路模拟量输出正极		
AO(模拟量 输出)	30	A02	第二路模拟量输出正极		
間山/	29	VOUT+	电源输出接口正		
	28	VOUT-	电源输出接口负		
	52	DI1	第一路开关量输入信号正		
	51	DI2	第二路开关量输入信号正		
	50	DI3	第三路开关量输入信号正		
	49	DI4	第四路开关量输入信号正		
	48	DI5	第五路开关量输入信号正		
	47	DI6	第六路开关量输入信号正		
	46	DI7	第七路开关量输入信号正		
	45	DI8	第八路开关量输入信号正		
	44	DCOM-	输入信号公共负		
DI (正子昌	43	DI9	第九路开关量输入信号正		
DI(开关量 输入)	42	DI10	第十路开关量输入信号正		
ע איי עיימר	41	DI11	第十一路开关量输入信号正		
	40	DI12	第十二路开关量输入信号正		
	39	DI13	第十三路开关量输入信号正		
	38	DI14	第十四路开关量输入信号正		
	37	DI15	第十五路开关量输入信号正		
	36	DI16	第十六路开关量输入信号正		
	35	DCOM-	输入信号公共负		
	34	VOUT+	电源输出正极		
	33	VOUT-	电源输出负极(接无源开关量时与35短接)		
	JPDI	17-24	扩展开关量输入17-24路接口		

	JPDI25-32	扩展开关量输出25-32路接口
	JPD01-8	扩展继电器输出1-8路接口
DO(继电器	JPD09-16	扩展继电器输出9-16路接口
控制)	JPD017-24	扩展继电器输出17-24路接口
	JPD025-32	扩展继电器输出25-32路接口

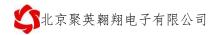
六、通讯接线说明

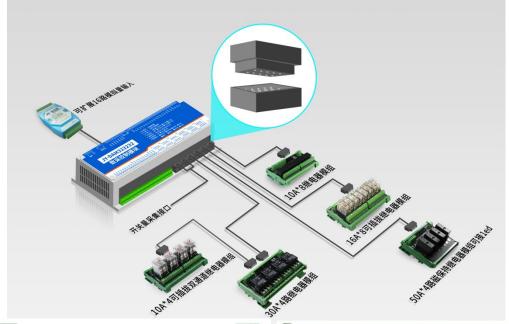
1、RS485级联接线方式


电脑自带的串口一般是 RS232,需要配 232-485 转换器(工业环境建议使用有源带隔离的转换器),转换后 RS485 为 A、B 两线,A 接板上 A 端子,B 接板上 B 端子,485 屏蔽可以接 GND。若设备比较多建议采用双绞屏蔽线,采用链型网络结构。

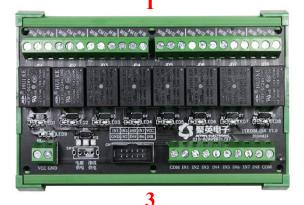
2、RS232 接线

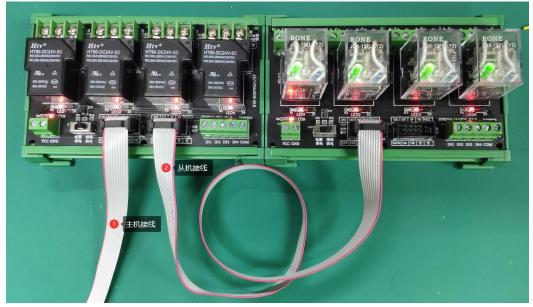
RS232接口为 DB9 头接口,使用标准直通线连接。

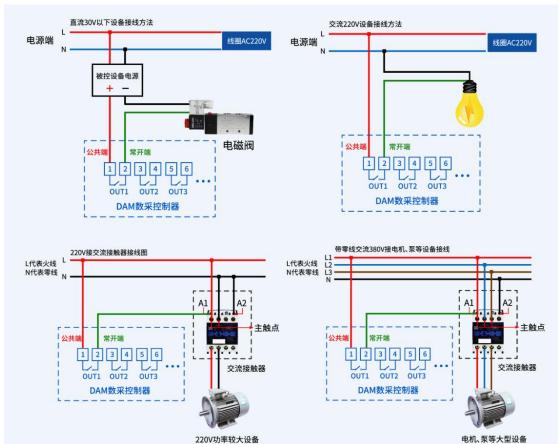

七、输入输出接线


1、开关量接线示意图

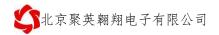
2、继电器接线说明

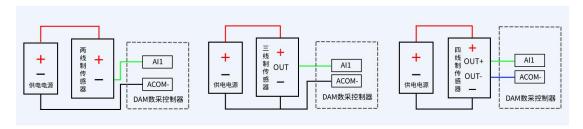

继电器均为拓展外接形式,可自行搭配选择。





4


- 1、10A 四路可插拔继电器
- 2、30A 四路继电器
- 3、10A 八路继电器
- 4、16A 八路继电器
- 5、50A 四路磁保持继电器



3、模拟量接线示意图

下图中的电源部分为传感器供电,AI1-AI16 接传感器信号,ACOM-为传感器信号地。通常显示为电压值或电流值,外接传感器需要进行量程变换

八、测试软件说明

1、软件下载

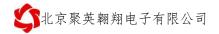

软件下载链接地址: https://www.juyingele.com/download/DAMSoftware.zip

2、软件界面

JYDAM 调试软件:


工具栏	说明
通讯设置	● 串口/网络通讯方式选择; ● 端口号/TCP 地址选择;
<u>DO 控制</u>	 ● 设置 AI/DI/DO 读取刷新时间。 ● 操作 DO 通道; ● 选择 DO 模式; ● 设置动作时间。
<u>DI</u> 输入	 ● 查看 DI 输入状态; ● 读取 DI 状态生成查询指令; ● 设置 DI/DO 通道名称。
模拟量输入	● 显示 4-20ma/0-10v/0-5v 实时数据/曲线;

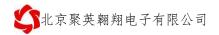
	● 显示 PT100/K 型热电偶/DS18B20 温度数据/曲线;
	● 显示实时采集时间;
	● 设置 AI/温度通道名称;
	● 设置 AI 通道量程转换及显示单位;
	● 手动导出 excel 表格数据;
	● 手动保存数据曲线。
模拟量输出	● 设置 AO 输出;
<u> </u>	● 生成 AO 多通道输出指令。
	● 显示当前设备 AI/DI/DO 通道数量信息;
	● 设置波特率;
而 罢 <u>多</u> 数	● 设置偏移地址;
配置参数	● 设置工作模式;
	● 设置 AI/DI/DO 自动回传;
	● 设置 DO 掉电记忆。
指令区域	● 生成 AI/DI/DO/AO/参数设置等指令。
调试区域	● 用户自定义发送指令测试。


3、通讯测试

- ① 选择设备当前串口号(IP地址填写IP);
- ② 选择默认波特率 9600;
- ③ 打开端口:
- ④ 右侧有接收指令,可控制继电器即通讯成功。

4、模拟量数据输入说明

① 选择模拟量输入;


② 下方可以直接查看数据大小和实时曲线。

5、模拟量数据输出说明

- ① 选择模拟量输出:
- ② 选择相应产品型号;
- ③ 通道内输入数值大小(4-20ma:400-2000/0-10v:100-1000),点设定既可输出。

九、参数及工作模式配置

1、设备地址

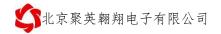
1.1、设备地址的介绍

DAM 系列设备地址默认为 1,使用广播地址为 254 进行通讯,*用 0 无法通讯*。 **设备地址=偏移地址。**

1.2、设备地址的读取

设备正常通讯后,初始设备地址写入254,然后点击软件上方"配置参数"即可读到设备的当前地址。

1.3、偏移地址的设定与读取


点击 JYDAM 调试软件下方偏移地址后边的"读取"或"设置"来对设备的偏移地址进行读取或设置。

2、波特率的读取与设置

点击下方波特率设置栏的"读取"和"设置"就可以分别读取和设置波特率和地址,操作后需要重启设备和修改电脑串口设置。

3、工作模式

①、普通版:

设备默认输入和输出之间为互相独立,没有关系。

②、智能自控版:

开关量 (DI) 输入和模拟量 (AI) 输入与继电器输出 (DO) 的对应关系,需要使用 DLC 配置软件进行配置。

DLC 配置软件下载地址:

https://www.juyingele.com/download/DLC timing Config.zip

4、闪开闪断功能及设置

4.1、闪开闪断功能介绍

手动模式:对继电器每操作一次,继电器则翻转一次(闭合时断开,断开时闭合);

闪开模式:对继电器每操作一次,继电器则闭合 1 秒(实际时间【单位秒】=设置数字*0.1)后自行断开;

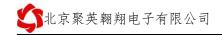
闪断模式:对继电器每操作一次,继电器则断开 1.秒(时间可调)后自行闭合;

4.2、闪断闪开的设置

打开"**聚英翱翔 DAM 调试软件**"点击继电器模式后面下拉箭头进行模式的选择。(后边时间可自行设置,实际时间=填写数字*0.1【单位秒】)

注:闪断闪开模式不能写入设备芯片内,软件上选择闪断闪开模式后,所有 通道都为闪断闪开模式下,可通过发送单个通道的闪断闪开指令来进行单个通 道的控制,不影响其他通道的正常控制。

十、开发资料说明

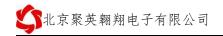

1、通讯协议说明

官网: www. juyingele. com

本产品支持标准 modbus 指令,有关详细的指令生成与解析方式,可根据本文中的寄存器表结合参考《MODBUS 协议中文版》 即可。

Modbus 协议说明书下载链接地址:

https://www.juyingele.com/download/Modbus poll.zip


2、Modbus 寄存器说明

线圈寄存器地址表:

寄存器名称支持指令码寄存器地址说明继电器线圈控制01: 查询指令, 0第一路继电器输出DO205: 单通道控制指令, 0第二路继电器输出DO3制指令, 2第三路继电器输出DO415: 多通道同时控制指令。3第四路继电器输出DO5时控制指令。4第五路继电器输出DO65第六路继电器输出DO76第七路继电器输出DO87第八路继电器输出	
DO1 01: 查询指令, 0 第一路继电器输出 DO2 05: 单通道控 1 第二路继电器输出 DO3 制指令, 2 第三路继电器输出 DO4 15: 多通道同 时控制指令。 3 第四路继电器输出 DO5 时控制指令。 4 第五路继电器输出 DO6 5 第六路继电器输出 DO7 6 第七路继电器输出	
DO2 05: 单通道控 1 第二路继电器输出 DO3 制指令, 2 第三路继电器输出 DO4 15: 多通道同时控制指令。 3 第四路继电器输出 DO5 时控制指令。 4 第五路继电器输出 DO6 5 第六路继电器输出 DO7 6 第七路继电器输出	
DO3 制指令, 2 第三路继电器输出 DO4 15: 多通道同时控制指令。 3 第四路继电器输出 DO5 4 第五路继电器输出 DO6 5 第六路继电器输出 DO7 6 第七路继电器输出	
DO4 15: 多通道同 3 第四路继电器输出 DO5 时控制指令。 4 第五路继电器输出 DO6 5 第六路继电器输出 DO7 6 第七路继电器输出	
DO5 时控制指令。 4 第五路继电器输出 DO6 5 第六路继电器输出 DO7 6 第七路继电器输出	
DO6 5 第六路继电器输出 DO7 6 第七路继电器输出	
DO7 6 第七路继电器输出	
DO8 第八路继由器输出	
/ / / / / / / / / / / / / / / / / / /	
DO9 8 第九路继电器输出	
DO10 第十路继电器输出	
DO11 10 第十一路继电器输出	
DO12 第十二路继电器输出	
DO13 12 第十三路继电器输出	
DO14 第十四路继电器输出	
DO15 14 第十五路继电器输出	
DO16 第十六路继电器输出	
DO17 16 第十七路继电器输出	
DO18 第十八路继电器输出	
DO19 18 第十九路继电器输出	
DO20 第二十路继电器输出	
DO21 20 第二十一路继电器输出	
DO22 第二十二路继电器输出	
DO23 第二十三路继电器输出	
DO24 第二十四路继电器输出	
DO25 24 第二十五路继电器输出	
DO26 第二十六路继电器输出	
DO27 26 第二十七路继电器输出	
DO28 第二十八路继电器输出	
DO29 28 第二十九路继电器输出	
DO30 第三十路继电器输出	
DO31 30 第三十一路继电器输出	
DO32 第三十二路继电器输出	
离散量输入	
DI1 02:查询指令。 0 第一路输入	
DI2 1 第二路输入	
DI3 第三路输入	

DI4		3		第四路输入
DI5		4		第五路输入
DI6		5		第六路输入
DI7		6		第七路输入
DI8		7		第八路输入
DI9		8		第九路输入
DI10		9		第十路输入
DI11		10		第十一路输入
DI12		11		第十二路输入
DI13		12		第十三路输入
DI14		13		第十四路输入
DI15		14		第十五路输入
DI16		15		第十六路输入
DI17		16		第十七路输入
DI18		17		第十八路输入
DI19		18		第十九路输入
DI20		19		第二十路输入
DI21		20		第二十一路输入
DI22		21		第二十二路输入
DI23		22		第二十三路输入
DI24		23		第二十四路输入
DI25		24		第二十五路输入
DI26		25		第二十六路输入
DI27		26		第二十七路输入
DI28		27		第二十八路输入
DI29		28		第二十九路输入
DI30		29		第三十路输入
DI31		30		第三十一路输入
DI32		31		第三十二路输入
模拟量输入				
AI1	04: 查询指令。	u16	0	第一路输入
AI2	备注: 前 16	u16	1	第二路输入
AI3	路是本身的模	u16	2	第三路输入
AI4	拟量,	u16	3	第四路输入
AI5	后 16 路是主	u16	4	第五路输入
AI6	站读取的从机 模拟量。	u16	5	第六路输入
AI7	7天75年。	u16	6	第七路输入
AI8		u16	7	第八路输入
AI9		u16	8	第九路输入
AI10		u16	9	第十路输入
AI11		u16	10	第十一路输入

AI12		u16	11	第十二路输入			
AI13		u16	12	第十三路输入			
AI14		u16	13	第十四路输入			
AI15		u16	14	第十五路输入			
AI16		u16	15	第十六路输入			
AI17		u16	16	第十七路输入			
AI18		u16	17	第十八路输入			
AI19		u16	18	第十九路输入			
AI20		u16	19	第二十路输入			
AI21		u16	20	第二十一路输入			
AI22		u16	21	第二十二路输入			
AI23		u16	22	第二十三路输入			
AI24		u16	23	第二十四路输入			
AI25		u16	24	第二十五路输入			
AI26		u16	25	第二十六路输入			
AI27		u16	26	第二十七路输入			
AI28		u16	27	第二十八路输入			
AI29		u16	28	第二十九路输入			
AI30		u16	29	第三十路输入			
AI31		u16	30	第三十一路输入			
AI32		u16	21	第三十二路输入			
模拟量输出							
AO1	03: 查询指令,	400		第一路模拟量输出			
AO2	06: 单通道写	401		第二路模拟量输出			
	入指令,						
	16: 多通道同						
	时写入指令。						
配置参数							
RS232 波特率	保持寄存器	1000		见下表波特率数值对应表,默认为0,			
\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.				该寄存器决定 RS232 的通信方式。			
RS485 波特率		1001		见下表波特率数值对应表,默认为0,			
				支持 0-6, 该寄存器决定 RS485 的通信			
12-74-1-1-1-1		10.5		波方式			
偏移地址		1002		设备地址=偏移地址			

备注:

①:使用第三方 PLC/组态与设备通讯时, Modbus 地址定义如下:

00001 至 09999 是离散输出(线圈)

10001 至 19999 是离散输入(触点)

30001 至 39999 是输入寄存器(通常是模拟量输入)

40001 至 49999 是保持寄存器

采用 5 位码格式,第一个字符决定寄存器类型,其余 4 个字符代表地址。地址 1 从 0

开始,如 00001 对应 0000。

说明:由于不同品牌 PLC/组态软件对 Modbus 地址定义可能有不同,具体以其帮助文档中对 Modbus 的定义说明为准。

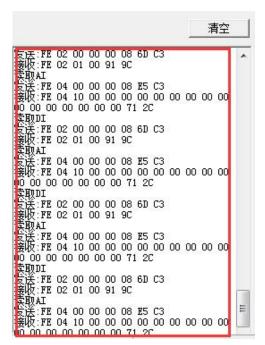
PLC 例程下载地址:

https://www.juyingele.com/download/PLC_licheng.zip

第三方组态 (MCGS/组态王/力控/WINCC/威纶通) 例程下载地址:

https://www.juyingele.com/download/zutai.zip②: 波特率及校验位

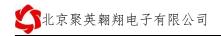
串口1保持寄存器地址1000 串口2保持寄存器地址1001

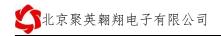

字节位数	定义	说明
Bit0~Bit7	波特率	0: 9600
		1: 2400
		2: 4800
		3: 9600
		4: 19200
		5: 38400
		6: 115200
		7: 57600
		8: 56000
		9: 14400
		10: 1200
Bit8~Bit9	奇偶校验	0: 无校验
		1: 偶校验 (Even)
		2: 奇校验 (Odd)
Bit10~Bit11	停止位	0: 停止位 1 位
		1: 停止位 2 位
		2: 停止位 1.5 位

3、指令生成说明

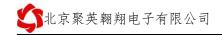
指令可通过"聚英翱翔 DAM 调试软件", 勾选调试信息来获取。

【DAM0888】: 【继电器 8】【光耦 8】【模拟里 8】 读继电器 读光耦 读模拟里 ☑ 调试信息




指令生成说明:对于下表中没有的指令,用户可以自己根据 modbus 协议生成,对于继电器线圈的读写,实际就是对 modbus 寄存器中的线圈寄存器的读写,上文中已经说明了继电器寄存器的地址,用户只需生成对寄存器操作的读写指令即可。例如读或者写继电器 1 的状态,实际上是对继电器 1 对应的线圈寄存器 00001 的读写操作。

4、指令列表


情景 1 控制继电器	RTU 格式(16 进制发送)
查询三十二路状态	FE 01 00 00 00 20 29 DD
查询指令返回信息	FE 01 04 00 00 00 00 F4 DE
控制第一路开	FE 05 00 00 FF 00 98 35
控制返回信息	FE 05 00 00 FF 00 98 35
控制第一路关	FE 05 00 00 00 00 D9 C5
控制返回信息	FE 05 00 00 00 00 D9 C5
控制第二路开	FE 05 00 01 FF 00 C9 F5
控制第二路关	FE 05 00 01 00 00 88 05
控制第三路开	FE 05 00 02 FF 00 39 F5
控制第三路关	FE 05 00 02 00 00 78 05
控制第四路开	FE 05 00 03 FF 00 68 35
控制第四路关	FE 05 00 03 00 00 29 C5
控制第五路开	FE 05 00 04 FF 00 D9 F4
控制第五路关	FE 05 00 04 00 00 98 04
控制第六路开	FE 05 00 05 FF 00 88 34
控制第六路关	FE 05 00 05 00 00 C9 C4
控制第七路开	FE 05 00 06 FF 00 78 34
控制第七路关	FE 05 00 06 00 00 39 C4
控制第八路开	FE 05 00 07 FF 00 29 F4

+>+1** 1	FF 05 00 05 00 00 00 00 0
控制第八路关	FE 05 00 07 00 00 68 04
控制第九路开	FE 05 00 08 FF 00 19 F7
控制第九路关	FE 05 00 08 00 00 58 07
控制第十路开	FE 05 00 09 FF 00 48 37
控制第十路关	FE 05 00 09 00 00 09 C7
控制第十一路开	FE 05 00 0A FF 00 B8 37
控制第十一路关	FE 05 00 0A 00 00 F9 C7
控制第十二路开	FE 05 00 0B FF 00 E9 F7
控制第十二路关	FE 05 00 0B 00 00 A8 07
控制第十三路开	FE 05 00 0C FF 00 58 36
控制第十三路关	FE 05 00 0C 00 00 19 C6
控制第十四路开	FE 05 00 0D FF 00 09 F6
控制第十四路关	FE 05 00 0D 00 00 48 06
控制第十五路开	FE 05 00 0E FF 00 F9 F6
控制第十五路关	FE 05 00 0E 00 00 B8 06
控制第十六路开	FE 05 00 0F FF 00 A8 36
控制第十六路关	FE 05 00 0F 00 00 E9 C6
控制第十七路开	FE 05 00 10 FF 00 99 F0
控制第十七路关	FE 05 00 10 00 00 D8 00
控制第十八路开	FE 05 00 11 FF 00 C8 30
控制第十八路关	FE 05 00 11 00 00 89 C0
控制第十九路开	FE 05 00 12 FF 00 38 30
控制第十九路关	FE 05 00 12 00 00 79 C0
控制第二十路开	FE 05 00 13 FF 00 69 F0
控制第二十路关	FE 05 00 13 00 00 28 00
控制第二十一路开	FE 05 00 14 FF 00 D8 31
控制第二十一路关	FE 05 00 14 00 00 99 C1
控制第二十二路开	FE 05 00 15 FF 00 89 F1
控制第二十二路关	FE 05 00 15 00 00 C8 01
控制第二十三路开	FE 05 00 16 FF 00 79 F1
控制第二十三路关	FE 05 00 16 00 00 38 01
控制第二十四路开	FE 05 00 17 FF 00 28 31
控制第二十四路关	FE 05 00 17 00 00 69 C1
控制第二十五路开	FE 05 00 18 FF 00 18 32
控制第二十五路关	FE 05 00 18 00 00 59 C2
控制第二十六路开	FE 05 00 19 FF 00 49 F2
控制第二十六路关	FE 05 00 19 00 00 08 02
控制第二十七路开	FE 05 00 1A FF 00 B9 F2
控制第二十七路关	FE 05 00 1A 00 00 F8 02
控制第二十八路开	FE 05 00 1B FF 00 E8 32
控制第二十八路关	FE 05 00 1B 00 00 A9 C2

控制第二十九路开	FE 05 00 1C FF 00 59 F3
控制第二十九路关	FE 05 00 1C 00 00 18 03
控制第三十路开	FE 05 00 1D FF 00 08 33
控制第三十路关	FE 05 00 1D 00 00 49 C3
控制第三十一路开	FE 05 00 1E FF 00 F8 33
控制第三十一路关	FE 05 00 1E 00 00 B9 C3
控制第三十二路开	FE 05 00 1F FF 00 A9 F3
控制第三十二路关	FE 05 00 1F 00 00 E8 03
情景2查询开关量输入	
查询三十二路开关量状态	FE 02 00 00 00 20 6D DD
查询指令返回信息	FE 02 04 00 00 00 00 F4 ED
情景 3 查询模拟量	
查询第1路模拟量	FE 04 00 00 00 01 25 C5
返回信息	FE 04 02 00 00 AD 24
查询第2路模拟量	FE 04 00 01 00 01 74 05
查询第3路模拟量	FE 04 00 02 00 01 84 05
查询第4路模拟量	FE 04 00 03 00 01 D5 C5
查询第5路模拟量	FE 04 00 04 00 01 64 04
查询第6路模拟量	FE 04 00 05 00 01 35 C4
查询第7路模拟量	FE 04 00 06 00 01 C5 C4
查询第8路模拟量	FE 04 00 07 00 01 94 04
查询第9路模拟量	FE 04 00 08 00 01 A4 07
查询第10路模拟量	FE 04 00 09 00 01 F5 C7
查询第 11 路模拟量	FE 04 00 0A 00 01 05 C7
查询第 12 路模拟量	FE 04 00 0B 00 01 54 07
查询第 13 路模拟量	FE 04 00 0C 00 01 E5 C6
查询第 14 路模拟量	FE 04 00 0D 00 01 B4 06
查询第 15 路模拟量	FE 04 00 0E 00 01 44 06
查询第 16 路模拟量	FE 04 00 0F 00 01 15 C6
查询第 16 路模拟量	FE 04 00 0F 00 01 15 C6
查询第 17 路模拟量	FE 04 00 10 00 01 24 00
查询第 18 路模拟量	FE 04 00 11 00 01 75 C0
查询第 19 路模拟量	FE 04 00 12 00 01 85 C0
查询第 20 路模拟量	FE 04 00 13 00 01 D4 00
查询第 21 路模拟量	FE 04 00 14 00 01 65 C1
查询第 22 路模拟量	FE 04 00 15 00 01 34 01
查询第 23 路模拟量	FE 04 00 16 00 01 C4 01
查询第 24 路模拟量	FE 04 00 17 00 01 95 C1
查询第 25 路模拟量	FE 04 00 18 00 01 A5 C2
查询第 26 路模拟量	FE 04 00 19 00 01 F4 02
查询第 27 路模拟量	FE 04 00 1A 00 01 04 02

查询第 28 路模拟量	FE 04 00 1B 00 01 55 C2
查询第 29 路模拟量	FE 04 00 1C 00 01 E4 03
查询第 30 路模拟量	FE 04 00 1D 00 01 B5 C3
查询第 31 路模拟量	FE 04 00 1E 00 01 45 C3
查询第 32 路模拟量	FE 04 00 1F 00 01 14 03
查询第 1~32 路模拟量	FE 04 00 00 00 20 E5 DD

5、指令详解

5.1、继电器输出

控制 1 路继电器(以第一路开为例,其他通道参照本例),任意一个字节变动,CRC 校验位会随之变动。

发送码: FE 05 00 00 FF 00 98 35

字段	含义	备注
FE	设备地址	这里为广播地址
05	05 指令	单个控制指令
00 00	地址	要控制继电器寄存器地址
FF 00	指令	继电器开的动作
98 35	CRC16	前 6 字节数据的 CRC16 校验和

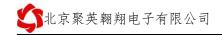
继电器卡返回信息:

返回码: FE 05 00 00 FF 00 98 35

字段	含义	备注
FE	设备地址	这里为广播地址
05	05 指令	单个控制指令
00 00	地址	要控制继电器寄存器地址
FF 00	指令	继电器开的动作
98 35	CRC16	前 6 字节数据的 CRC16 校验和

5.2、继电器状态

查询 32 路继电器


FE 01 00 00 00 20 29 DD

字段	含义	备注
FE	设备地址	这里为广播地址
01	01 指令	查询继电器状态指令
00 00	起始地址	要查询的第一个继电器寄存器地址
00 20	查询数量	要查询的继电器数量
29 DD	CRC16	前 6 字节数据的 CRC16 校验和

继电器卡返回信息:

FE 01 04 00 00 00 00 F4 DE

丁权 一百人 一日仁	字段	含义	备注
----------------	----	----	----

FE	设备地址	
01	01 指令	返回指令: 如果查询错误,返回 0x81
04	字节数	返回状态信息的所有字节数。1+(n-1)/8
00	查询的状态	返回的继电器状态。
00		Bit0:第一个继电器状态
00		Bitl:第二个继电器状态
00		0 0 0 0 0 0
		Bit32:第 32 个继电器状态
61 9C	CRC16	前 6 字节数据的 CRC16 校验和

5.3、光耦输入

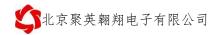
查询光耦

发送码: FE 02 00 00 00 20 6D DD

字段	含义	备注
FE	设备地址	
02	02 指令	查询离散量输入(光耦输入)状态指令
00 00	起始地址	要查询的第一个光耦的寄存器地址
00 20	查询数量	要查询的光耦状态数量
6D DD	CRC16	

光耦返回信息:

返回码: FE 02 04 00 00 00 00 F4 ED


字段	含义	备注
FE	设备地址	
02	02 指令	返回指令: 如果查询错误,返回 0x82
04	字节数	返回状态信息的所有字节数。1+(n-1)/8
00	查询的状态	返回的继电器状态。
00		Bit0:第一个光耦输入状态
00		Bit1:第二个光耦输入状态
00		0 0 0 0 0 0
		Bi32:第三十二个光耦输入状态
F4 ED	CRC16	

5.4、模拟量查询

查询模拟量 AD 字

发送码: FE 04 00 00 00 20 E5 DD

字段	含义	备注
FE	设备地址	
04	04 指令	查询输入寄存器指令
00 00	起始地址	要查询的第一路模拟量寄存器地址
00 20	查询数量	要查询的模拟量数量

E5 DD	CRC16	

模拟返回信息:

字段	含义	备注
FE	设备地址	
04	04 指令	返回指令:如果查询错误,返回 0x82
40	字节数	返回状态信息的所有字节数
00 00	查询的 AD	0x1232, 即十进制 4658, 为查询的模拟量 AD
	字	字的值, 实际值=返回值*0.001(即 4.658mA)
44 5D	CRC16	

5.5、单路模拟量输出

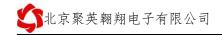
模拟量数据与实际输出值之间的关系为:实际值=输出值*0.01

设置第一路模拟量输出

FE 06 01 90 03 20 9D 3C

字段	含义	备注
FE	设备地址	
06	06 指令	模拟量输出
01 90	地址	要设置第一路模拟量寄存器地址 400
03 20	数值	要设置的模拟量数值 0x0320 = 800
9D 3C	CRC16	

模拟返回信息:


FE 06 01 90 03 20 9D3C

字段	含义	备注
FE	设备地址	
06	06 指令	模拟量输出
01 90	地址	要设置第一路模拟量寄存器地址 400
03 20	数值	要设置的模拟量数值
9D 3C	CRC16	

5.6、设置多路模拟量输出

FE 10 01 90 00 02 04 00 00 00 00 C4 44

字段	含义	备注
FE	设备地址	
10	10 指令	写多路输出寄存器指令
01 90	地址	输出的第一路模拟量寄存器地址
00 02	输出数量	模拟量输出的数量
04	字节数	设置输出字节数

00 00	模拟量输出	第1路模拟量输出
	值	
00 00		第2路模拟量输出
C4 44	CRC16	校验位

模拟返回信息:

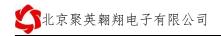
FE 10 01 90 00 02 54 16

字段	含义	备注
FE	设备地址	
10	10 指令	写多路输出寄存器指令
01 90	地址	要查询的第一路模拟量寄存器地址
00 02	输出数量	模拟量输出的数量
54 16	CRC16	校验位

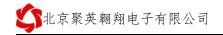
5.7、闪开闪闭指令

闪开闪闭指令解析

闪开发送码: FE 10 00 03 00 02 04 00 04 00 0A 00 D8 闪断发送码: FE 10 00 03 00 02 04 00 02 00 14 21 62


字段	含义	备注
FE	设备地址	
10	10 指令	查询输入寄存器指令
00 03	继电器地址	要控制的器地址
00 02	控制命令数	要对继电的命令个数
	量	
04	字节数	控制信息命令的的所有字节数。1+(n-1)/8
00 04 或 00 02	指令	00 04 为闪开指令 00 02 为闪闭命令
00 0A	间断时间	00 0A 为十六进制换为十进制则为 10 间隔时
		间为 (0.1 秒*10)
00 D8	CRC16	校验方式

返回码: FE 10 00 03 00 02 A5 C7


字段	含义	备注
FE	设备地址	
10	10 指令	返回指令:如果查询错误,返回 0x82
00 03	设备地址	查询设备的地址
00 02	接收命令数	设备接受的命令个数
A5 C7	CRC16	校验位

指令列表

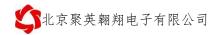
闪闭指令	RTU 格式(16 进制发送)
控制1路	FE 10 00 03 00 02 04 00 04 00 0A 41 6B
控制 2 路	FE 10 00 08 00 02 04 00 04 00 0A 00 D8
控制 3 路	FE 10 00 0D 00 02 04 00 04 00 0A C0 E7
控制 4 路	FE 10 00 12 00 02 04 00 04 00 0A 81 AB

控制 5 路	FE 10 00 17 00 02 04 00 04 00 0A 41 94
控制 6 路	FE 10 00 1C 00 02 04 00 04 00 0A 00 27
控制 7 路	FE 10 00 21 00 02 04 00 04 00 0A C2 AA
控制 8 路	FE 10 00 26 00 02 04 00 04 00 0A 83 4C
控制9路	FE 10 00 2B 00 02 04 00 04 00 0A 42 D5
控制 10 路	FE 10 00 30 00 02 04 00 04 00 0A 02 6A
控制 11 路	FE 10 00 35 00 02 04 00 04 00 0A C2 55
控制 12 路	FE 10 00 3A 00 02 04 00 04 00 0A 82 15
控制 13 路	FE 10 00 3F 00 02 04 00 04 00 0A 42 2A
控制 16 路	FE 10 00 44 00 02 04 00 04 00 0A 04 BD
控制 17 路	FE 10 00 49 00 02 04 00 04 00 0A C5 24
控制 18 路	FE 10 00 4E 00 02 04 00 04 00 0A 84 C2
控制 19 路	FE 10 00 53 00 02 04 00 04 00 0A 44 57
控制 20 路	FE 10 00 58 00 02 04 00 04 00 0A 05 E4
控制 21 路	FE 10 00 5D 00 02 04 00 04 00 0A C5 DB
控制 22 路	FE 10 00 62 00 02 04 00 04 00 0A 86 8F
控制 23 路	FE 10 00 67 00 02 04 00 04 00 0A 46 B0
控制 24 路	FE 10 00 6C 00 02 04 00 04 00 0A 07 03
控制 25 路	FE 10 00 71 00 02 04 00 04 00 0A C7 96
控制 26 路	FE 10 00 76 00 02 04 00 04 00 0A 86 70
控制 27 路	FE 10 00 7B 00 02 04 00 04 00 0A 47 E9
控制 28 路	FE 10 00 80 00 02 04 00 04 00 0A 09 1E
控制 29 路	FE 10 00 85 00 02 04 00 04 00 0A C9 21
控制 30 路	FE 10 00 8A 00 02 04 00 04 00 0A 89 61
控制 31 路	FE 10 00 8F 00 02 04 00 04 00 0A 49 5E
控制 32 路	FE 10 00 94 00 02 04 00 04 00 0A 09 E1
闪断指令	
控制 1 路	FE 10 00 03 00 02 04 00 02 00 0A A1 6A
控制 2 路	FE 10 00 08 00 02 04 00 02 00 0A E0 D9
控制 3 路	FE 10 00 0D 00 02 04 00 02 00 0A 20 E6
控制 4 路	FE 10 00 12 00 02 04 00 02 00 0A 61 AA
控制 5 路	FE 10 00 17 00 02 04 00 02 00 0A A1 95
控制 6 路	FE 10 00 1C 00 02 04 00 02 00 0A E0 26
控制7路	FE 10 00 21 00 02 04 00 02 00 0A 22 AB
控制 8 路	FE 10 00 26 00 02 04 00 02 00 0A 63 4D
控制9路	FE 10 00 2B 00 02 04 00 02 00 0A A2 D4
控制 10 路	FE 10 00 30 00 02 04 00 02 00 0A E2 6B
控制 11 路	FE 10 00 35 00 02 04 00 02 00 0A 22 54
控制 12 路	FE 10 00 3A 00 02 04 00 02 00 0A 62 14
控制 13 路	FE 10 00 3F 00 02 04 00 02 00 0A A2 2B
控制 16 路	FE 10 00 44 00 02 04 00 02 00 0A E4 BC

控制 17 路	FE 10 00 49 00 02 04 00 02 00 0A 25 25
控制 18 路	FE 10 00 4E 00 02 04 00 02 00 0A 64 C3
控制 19 路	FE 10 00 53 00 02 04 00 02 00 0A A4 56
控制 20 路	FE 10 00 58 00 02 04 00 02 00 0A E5 E5
控制 21 路	FE 10 00 5D 00 02 04 00 02 00 0A 25 DA
控制 22 路	FE 10 00 62 00 02 04 00 02 00 0A 66 8E
控制 23 路	FE 10 00 67 00 02 04 00 02 00 0A A6 B1
控制 24 路	FE 10 00 6C 00 02 04 00 02 00 0A E7 02
控制 25 路	FE 10 00 71 00 02 04 00 02 00 0A 27 97
控制 26 路	FE 10 00 76 00 02 04 00 02 00 0A 66 71
控制 27 路	FE 10 00 7B 00 02 04 00 02 00 0A A7 E8
控制 28 路	FE 10 00 80 00 02 04 00 02 00 0A E9 1F
控制 29 路	FE 10 00 85 00 02 04 00 02 00 0A 29 20
控制 30 路	FE 10 00 8A 00 02 04 00 02 00 0A 69 60
控制 31 路	FE 10 00 8F 00 02 04 00 02 00 0A A9 5F
控制 32 路	FE 10 00 94 00 02 04 00 02 00 0A E9 E0

5.8、全开全关指令

全开全关指令解析


全开发送码: FE OF OO OO OO 20 O4 FF FF FF FF F6 OB 全断发送码: FE OF OO OO OO 20 O4 OO OO OO OO F7 9F

其中FF FF FF 为全开全关指令,为二进制转换为16进制,2进制中1代表吸合,0代表断开,11111111 11111111 11111111 11111111 为全开,00000000 00000000 00000000 为全断,每8路为一个字节,起始为右侧开始,如1、5、8、10、12、16、21 通道打开,其他关闭,则1.5.8 为10010001,16 进制为91,10,12,16 为10001010,16 进制为8A,21 为00010000,16 进制为10,全部开关指令为91 8A 10 00。

字段	含义	备注	
FE	设备地址		
0F	0F 指令	返回指令:如果查询错误,返回 0x82	
00 00	起始地址		
00 20	控制数量	控制的继电器数量	
04	字节数	发送命令字节数	
FF FF FF FF (或 00 00 00 00)	全开全关命令	FF FF FF 全开命令	
		00 00 00 00 全关命令	
F6 0B(或 F7 9F)	CRC16	校验位	

全断全开返回码: FE OF OO OO OO 20 40 1C

字段	含义	备注
FE	设备地址	
0F	0F 指令	返回指令:如果查询错误,返回 0x82
00 00	起始地址	

00 20	数量	返回信息的继电器数量
40 1C	CRC16	校验位

一条指令控制多个继电器输出通道动作:

使用写多个寄存器功能码: 16 功能码(16 进制: 0x10);

- ▶ 保持寄存器 1050~1051: 对应位写"1"继电器打开 写"0"忽略;
- ▶ 保持寄存器 1052~1053: 对应位写"1"继电器关闭 写"0"忽略:
- ▶ 保持寄存器 1054~1055: 对应位写"1"继电器取反 写"0"忽略。

1、继电器打开

举例: FE 10 04 1A 00 02 04 20 20 00 00 79 01 继电器 6 和继电器 14 打开, 其它 忽略:

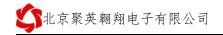
举例: FE 10 04 1A 00 02 04 1C 00 00 00 74 9B 继电器 11、继电器 12、继电器 13 打开,其它忽略:

举例: FE 10 04 1A 00 02 04 00 0F 00 00 43 08 继电器 1~4 打开, 其它忽略;

指令内容	说明
FE	设备地址,代表 10 进制广播地址 254
10	写多个寄存器的功能码
04 1A	1050 寄存器
00 02	写入寄存器地址的长度
04	具体控制指令的长度
00	9-16 路输出具体状态指令
0F	1-8 路输出具体状态指令(继电器 1-4 打开)
	2 进制: 00001111;
	16 进制: 0F
00	25-32 路输出具体状态指令
00	17-24 路输出具体状态指令
43 08	CRC16 校验位

设备返回指令: FE 10 04 1A 00 02 75 30

2、继电器关闭


举例: FE 10 04 1C 00 02 04 20 20 00 00 F9 2B 继电器 6、继电器 14 关闭, 其它 忽略:

举例: FE 10 04 1C 00 02 04 1C 00 00 00 F4 B1 继电器 11、继电器 12、继电器 13 关闭, 其它忽略;

举例: FE 10 04 1C 00 02 04 00 89 00 00 22 CB 继电器 1、继电器 4、继电器 8 关闭, 其它忽略;

举例: FE 10 04 1C 00 02 04 00 0F 00 00 C3 22 继电器 1~4 关闭, 其它忽略;

指令内容	说明
FE	设备地址,代表 10 进制广播地址 254
10	写多个寄存器的功能码
04 1C	1052 寄存器

00 02	写入寄存器地址的长度
04	具体控制指令的长度
00	9-16 路输出具体状态指令
0F	1-8 路输出具体状态指令(继电器 1-4 打开) 2 进制: 00001111; 16 进制: 0F
00	25-32 路输出具体状态指令
00	17-24 路输出具体状态指令
C3 22	CRC16 校验位

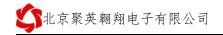
设备返回指令: FE 10 04 1C 00 02 95 31

3、继电器取反

举例: FE 10 04 1E 00 02 04 00 0F 00 00 42 FB 继电器 1~4 取反, 其它忽略;

第一次发:继电器 1~4 打开,其它忽略;第二次发:继电器 1~4 关闭,其它忽略;

指令内容	说明	
FE	设备地址,代表 10 进制广播地址 254	
10	写多个寄存器的功能码	
04 1E	1054 寄存器	
00 02	写入寄存器地址的长度	
04	具体控制指令的长度	
00	9-16 路输出具体状态指令	
0F	1-8 路输出具体状态指令(继电器 1-4 打开)	
	2 进制: 00001111;	
	16 进制: 0F	
00	25-32 路输出具体状态指令	
00	17-24 路输出具体状态指令	
42 FB	CRC16 校验位	


设备返回指令: FE 10 04 1E 00 02 34 F1

4、继电器打开关闭

举例: FE 10 04 1A 00 04 08 00 20 00 00 00 02 00 00 5E 5B 继电器 6 打开,同时继电器 2 关闭,其它忽略;

举例: FE 10 04 1A 00 04 08 00 0F 00 00 00 F0 00 00 21 6A 继电器 1~4 打开,同时继电器 5~8 关闭,其它忽略;

- 4 - E BB			
指令内	说明	备注	
容			
FE	设备地址,代表 10 进制广播地址 254		
10	写多个寄存器的功能码		
04 1A	1050 寄存器		
00 04	写入寄存器地址的长度		

08	具体控制指令的长度	
00	9-16 路输出具体状态指令	1~32 路打开状态
0F	1-8 路输出具体状态指令(继电器 1-4 打开)	
	2 进制: 00001111;	
	16 进制: 0F	
00	25-32 路输出具体状态指令	
00	17-24 路输出具体状态指令	
00	9-16 路输出具体状态指令	1~32 路关闭状态
0F	1-8 路输出具体状态指令(继电器 5-8 关闭)	
	2 进制: 11110000;	
	16 进制: F0	
00	25-32 路输出具体状态指令	
00	17-24 路输出具体状态指令	
21 6A	CRC16 校验位	

设备返回指令: FE 10 04 1A 00 04 F5 32

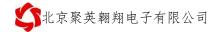
十一、常见问题与解决方法

1、232 通讯,设备控制无响应,不动作

设备与上位机进行通信使用的是 232 直连线。即 RX 对 RX, TX 对 TX, GND 对 GND

2、继电器只能开不能关

读取地址是否读到的是实际设备地址,调试信息栏内是否有返回指令,返回指令是否正确,如果读取地址失败,没有返回指令或返回指令异常,检查通讯线和通讯转换器


3、485 总线上挂有多个设备时,每个设备地址不能一样, 不能使用广播地址 254 来进行通讯。

广播地址在总线上只有一个设备时可以使用,大于1个设备时请以拨码开关区分地址来 控制,否则会因为模块在通信数据的判断不同步上导致指令无法正确执行。

十二、技术支持联系方式

联系电话: 4008128121、010-82899827/1-803

联系 QQ: 4008128121

软件下载

JYDAM 调试软件

https://www.juyingele.com/download/JYDAMSoftware.zip

以太网配置软件

https://www.juyingele.com/download/JYNetConfig.zip (二维码使用浏览器

扫描)

JYDAM 调试软件

以太网配置软件

欢迎官网聚英公司微信公众号查看最新科技,实时动态

28

官网: www.juyingele.com