

DAM1600D-MT 采集卡说明书 V1.0

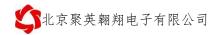
北京聚英翱翔电子有限责任公司 2020 年 11 月

官网: www. juyingele. com. cn 联系电话: 4006688400

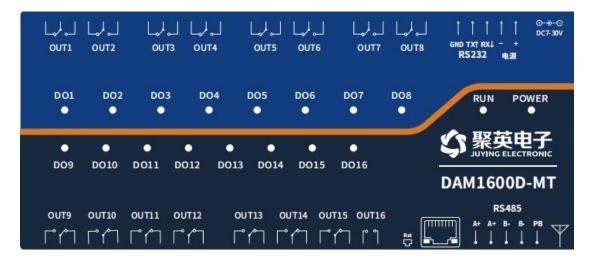
目 录

一、	产品特点		1
二、	产品功能		1
三、	主要参数		1
四、	接口说明		2
	1、引脚说明		2
五、	通讯接线说明		3
	1、RS485 级联接线方式		∠
六、	输入输出接线		∠
	1、开关量接线示意图	.错误!	未定义书签。
	2、继电器接线说明		∠
七、	测试软件说明		5
	1、软件下载		5
	2、软件界面		5
	3、通讯测试		
	4、模拟量数据输入说明		
八、	参数及工作模式配置		8
	1、设备地址		8
	2、波特率的读取与设置		8
	3、闪开闪断功能及设置		9
九、	开发资料说明		9
	1、通讯协议说明		9
	2、Modbus 寄存器说明		9
	3、指令生成说明		11
	4、 指令列表		12
	5、指令详解		
十、	常见问题与解决方法		18
+-	- 技术支持联系方式		15

一、产品特点

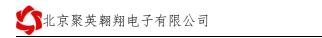

- DC24V 供电;
- RS485 通讯光电隔离,输入光耦隔离,继电器输出触点隔离;
- 采用全铁外壳, 抗干扰稳定工作;
- 通讯接口支持 RS232、RS485 可拓展网口、4G、WiFi;
- 支持标准 Modbus RTU/TCP/ASCII 协议
- 具有闪开、闪断功能,可以在指令里边带参数、操作继电器开一段时间 自动关闭;
- 可以设置 1-255 个设备地址,通过软件设置。

二、产品功能


- 16路继电器输出;
- 支持波特率: 2400,4800,9600,19200,38400,115200(可以通过软件修改, 默认 9600);

三、主要参数

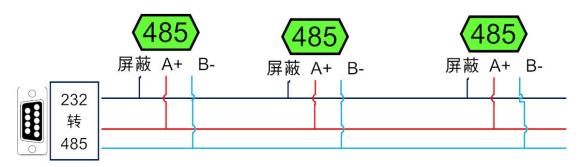
参数	说明		
触点容量	10A/250VAC		
耐久性	10万次		
数据接口	RS232、RS485、可拓展网口、WiFi、4G		
额定电压	DC 24V		
电源指示	1路红色 LED 指示(通电时常亮)		
通讯指示	1路绿色 LED 指示(通电时闪烁)		
温度范围	工业级,-40℃~85℃		
尺寸	311*105*29mm		
重量	1185g		
默认通讯格式	9600, n, 8, 1s		
波特率	2400,4800,9600,19200,38400,115200		
	配套配置软件、控制软件;		
软件支持	支持各家组态软件;		
	支持 Labviewd 等		



四、接口说明

1、引脚说明

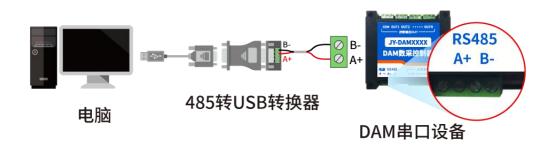
功能	引脚	说明
供电 — —		电源正极
供电	+	电源负极
	RXD	232通讯 RX 接口
	TXD	232通讯 TX 接口
通讯	GND	232通讯地(与电源负极公用)
	PB	485通讯屏蔽接口
	485A+	隔离485通讯 A 接口
	485B-	隔离485通讯 B 接口
		电器输出1路接口常闭 (左)
	继电器1	电器输出1路接口公共 (中)
		电器输出1路接口常开 (右)
		电器输出2路接口常闭
	继电器2	电器输出2路接口公共
		电器输出2路接口常开
		电器输出3路接口常闭
	继电器3	电器输出3路接口公共
		电器输出3路接口常开
		电器输出4路接口常闭
	继电器4	电器输出4路接口公共
		电器输出4路接口常开
		电器输出5路接口常闭
	继电器5	电器输出5路接口公共
		电器输出5路接口常开



DO(继电器		电器输出6路接口常闭
控制)	继电器6	电器输出6路接口公共
	NE GHI	电器输出6路接口常开
		电器输出7路接口常闭
	继电器7	电器输出7路接口公共
		电器输出7路接口常开
		电器输出8路接口常闭
	继电器8	电器输出8路接口公共
		电器输出8路接口常开
		电器输出9路接口常闭
	继电器9	电器输出9路接口公共
		电器输出9路接口常开
	AL L HH	电器输出10路接口常闭
	继电器 10	电器输出10路接口公共
	10	电器输出10路接口常开
	/NrL. 1111	电器输出11路接口常闭
	继电器 11	电器输出11路接口公共
	11	电器输出11路接口常开
	继电器 12	电器输出12路接口常闭
		电器输出12路接口公共
	12	电器输出12路接口常开
	继电器	电器输出12路接口常闭
	13 13	电器输出12路接口公共
		电器输出12路接口常开
	继电器	电器输出12路接口常闭
	14	电器输出12路接口公共
		电器输出12路接口常开
	继电器	电器输出12路接口常闭
	15	电器输出12路接口公共 电器输出12路接口常开
		电器输出12路接口常闭
	继电器	电器输出12路接口公共
	16	电器输出12路接口常开
		- ··· · · · · · · · · · · · · · · · · ·

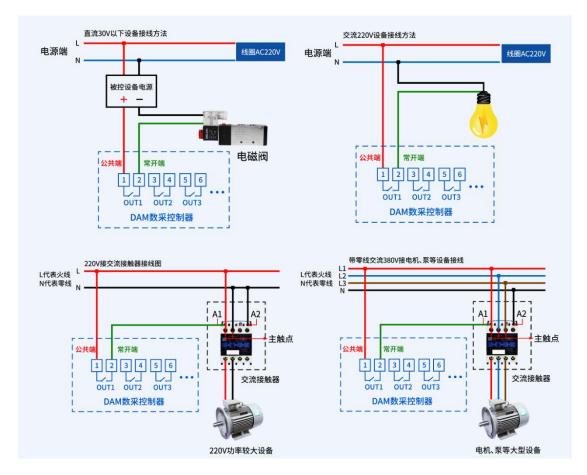
五、通讯接线说明

1、RS485 级联接线方式



电脑自带的串口一般是 RS232,需要配 232-485 转换器(工业环境建议使用有源带隔离的转换器),转换后 RS485 为 A、B 两线,A 接板上 A 端子,B 接板上 B 端子,485 屏蔽可以接 GND。若设备比较多建议采用双绞屏蔽线,采用链型网络结构。

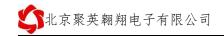
2、RS232 接线


3、USB 转 485 接线

六、输入输出接线

1、继电器接线说明

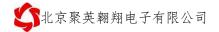
如下图所示


七、测试软件说明

1、软件下载

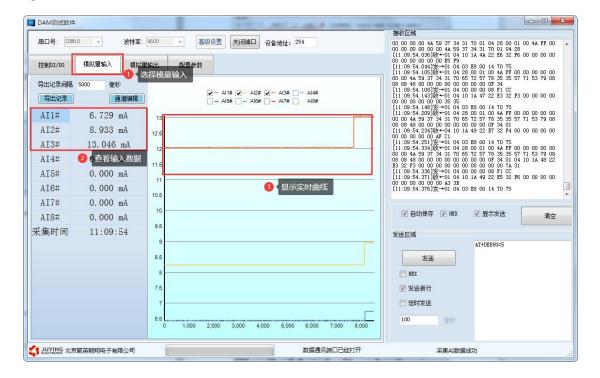
软件下载链接地址: http://www.juyingele.com.cn/software/software/聚英翱翔 DAM 调试软件使用教程.rar

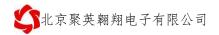
2、软件界面


JYDAM 调试软件:


工具栏	说明
	● 串口/网络通讯方式选择;
通讯设置	● 端口号/TCP 地址选择;
	● 设置 AI/DI/DO 读取刷新时间。
	操作 DO 通道;
DO 控制	选择 DO 模式;
	● 设置动作时间。
	● 查看 DI 输入状态;
<u>DI 输入</u>	● 读取 DI 状态生成查询指令;
	● 设置 DI/DO 通道名称。
	● 显示 4-20ma/0-10v/0-5v 实时数据/曲线;
	● 显示 PT100/K 型热电偶/DS18B20 温度数据/曲线;
	● 显示实时采集时间;
模拟量输入	● 设置 AI/温度通道名称;
	● 设置 AI 通道量程转换及显示单位;
	● 手动导出 excel 表格数据;
	● 手动保存数据曲线。
模拟量输出	● 设置 AO 输出;
1/1/2 主加口	● 生成 AO 多通道输出指令。
	● 显示当前设备 AI/DI/DO 通道数量信息;
	● 设置波特率;
配置参数	● 设置偏移地址;
Hu H. 2 34	● 设置工作模式;
	● 设置 AI/DI/DO 自动回传;
	● 设置 DO 掉电记忆。
指令区域	● 生成 AI/DI/DO/AO/参数设置等指令。
调试区域	用户自定义发送指令测试。

官网: www.juyingele.com


3、通讯测试


- ① 选择设备当前串口号(IP 地址填写 IP);
- ② 选择默认波特率 9600;
- ③ 打开端口:
- ④ 右侧有接收指令,可控制继电器即通讯成功。

4、模拟量数据输入说明

- ① 选择模拟量输入:
- ② 下方可以直接查看数据大小和实时曲线。

八、参数及工作模式配置

1、设备地址

1.1、设备地址的介绍

DAM 系列设备地址默认为 1,使用广播地址为 254 进行通讯,*用 0 无法通讯*。 **设备地址=偏移地址。**

1.2、设备地址的读取

设备正常通讯后,初始设备地址写入254,然后点击软件上方"配置参数"即可读到设备的当前地址。

1.3、偏移地址的设定与读取

点击 JYDAM 调试软件下方偏移地址后边的"读取"或"设置"来对设备的偏移地址进行读取或设置。

2、波特率的读取与设置

点击下方波特率设置栏的"读取"和"设置"就可以分别读取和设置波特率和地址,操作后需要重启设备和修改电脑串口设置。

3、闪开闪断功能及设置

3.1、闪开闪断功能介绍

手动模式:对继电器每操作一次,继电器则翻转一次(闭合时断开,断开时闭合):

闪开模式:对继电器每操作一次,继电器则闭合 1 秒(实际时间【单位秒】=设置数字*0.1)后自行断开:

闪断模式:对继电器每操作一次,继电器则断开 1.秒(时间可调)后自行闭合:

3.2、闪断闪开的设置

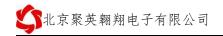
打开"**聚英翱翔 DAM 调试软件**"点击继电器模式后面下拉箭头进行模式的选择。(后边时间可自行设置,实际时间=填写数字*0.1【单位秒】)

注:闪断闪开模式不能写入设备芯片内,软件上选择闪断闪开模式后,所有 通道都为闪断闪开模式下,可通过发送单个通道的闪断闪开指令来进行单个通 道的控制,不影响其他通道的正常控制。

九、开发资料说明

1、通讯协议说明

本产品支持标准 modbus 指令,有关详细的指令生成与解析方式,可根据本文中的寄存器表结合参考《MODBUS 协议中文版》 即可。


Modbus 协议说明书下载链接地址:

http://www.juyingele.com.cn/software/software/Modbus%20POLL 软件及使用教程.rar

2、Modbus 寄存器说明

线圈寄存器地址表:

寄存器名称	支持指令码	寄存器地址	说明
继电器线圈控制			
DO1	01: 查询指令,	0	第一路继电器输出
DO2	05: 单通道控	1	第二路继电器输出
DO3	制指令,	2	第三路继电器输出
DO4	15: 多通道同	3	第四路继电器输出

DO5	时控制指令。	4	第五路继电器输出	
DO6		5	第六路继电器输出	
DO7		6	第七路继电器输出	
DO8		7	第八路继电器输出	
DO9		8	第九路继电器输出	
DO10		9	第十路继电器输出	
DO11		10	第十一路继电器输出	
DO12		11	第十二路继电器输出	
DO13		12	第十二路继电器输出	
DO14		13	第十二路继电器输出	
DO15		14	第十二路继电器输出	
DO16		15	第十二路继电器输出	
配置参数				
RS232 波特率	保持寄存器	1000	见下表波特率数值对应表,默认为0,	
			该寄存器决定 RS232 的通信方式。	
RS485 波特率		1001	见下表波特率数值对应表,默认为0,	
			支持 0-6,该寄存器决定 RS485 的通信	
			波方式	
偏移地址		1002	设备地址=偏移地址	

备注:

①:使用第三方 PLC/组态与设备通讯时, Modbus 地址定义如下:

00001 至 09999 是离散输出(线圈)

10001 至 19999 是离散输入(触点)

30001 至 39999 是输入寄存器(通常是模拟量输入)

40001 至 49999 是保持寄存器

采用 5 位码格式,第一个字符决定寄存器类型,其余 4 个字符代表地址。地址 1 从 0 开始,如 00001 对应 0000。

说明:由于不同品牌 PLC/组态软件对 Modbus 地址定义可能有不同,具体以其帮助文档中对 Modbus 的定义说明为准。

PLC 例程下载地址:

https://www.juyingele.com.cn/zlxz/danziliao/1226.html

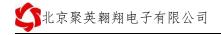
第三方组态(MCGS/组态王/力控/WINCC/威纶通)例程下载地址:

http://www.juyingele.com.cn/software/software/第三方组态例程.rar

②:波特率及校验位

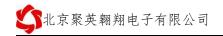
串口1保持寄存器地址1000

串口 2 保持寄存器地址 1001


字节位数	定义	说明
Bit0~Bit7	波特率	0: 9600
		1: 2400
		2: 4800
		3: 9600
		4: 19200
		5: 38400
		6: 115200
		7: 57600
		8: 56000
		9: 14400
		10: 1200
Bit8~Bit9	奇偶校验	0: 无校验
		1: 偶校验 (Even)
		2: 奇校验 (Odd)
Bit10~Bit11	停止位	0: 停止位 1 位
		1: 停止位 2 位
		2: 停止位 1.5 位

3、指令生成说明

指令可通过"聚英翱翔 DAM 调试软件", 勾选调试信息来获取。



指令生成说明:对于下表中没有的指令,用户可以自己根据 modbus 协议生成,对于继电器线圈的读写,实际就是对 modbus 寄存器中的线圈寄存器的读写,上文中已经说明了继电器寄存器的地址,用户只需生成对寄存器操作的读写指令即可。例如读或者写继电器 1 的状态,实际上是对继电器 1 对应的线圈寄存器 00001 的读写操作。

4、指令列表

情景 1 控制继电器	RTU 格式(16 进制发送)
查询十六路状态	FE 01 00 00 00 10 29 C9
查询指令返回信息	FE 01 02 00 00 AD E8
控制第一路开	FE 05 00 00 FF 00 98 35
控制返回信息	FE 05 00 00 FF 00 98 35
控制第一路关	FE 05 00 00 00 00 D9 C5
控制返回信息	FE 05 00 00 00 00 D9 C5
控制第二路开	FE 05 00 01 FF 00 C9 F5
控制第二路关	FE 05 00 01 00 00 88 05
控制第三路开	FE 05 00 02 FF 00 39 F5
控制第三路关	FE 05 00 02 00 00 78 05
控制第四路开	FE 05 00 03 FF 00 68 35
控制第四路关	FE 05 00 03 00 00 29 C5
控制第五路开	FE 05 00 04 FF 00 D9 F4
控制第五路关	FE 05 00 04 00 00 98 04
控制第六路开	FE 05 00 05 FF 00 88 34
控制第六路关	FE 05 00 05 00 00 C9 C4
控制第七路开	FE 05 00 06 FF 00 78 34
控制第七路关	FE 05 00 06 00 00 39 C4
控制第八路开	FE 05 00 07 FF 00 29 F4
控制第八路关	FE 05 00 07 00 00 68 04
控制第九路开	FE 05 00 08 FF 00 19 F7
控制第九路关	FE 05 00 08 00 00 58 07
控制第十路开	FE 05 00 09 FF 00 48 37
控制第十路关	FE 05 00 09 00 00 09 C7
控制第十一路开	FE 05 00 0A FF 00 B8 37
控制第十一路关	FE 05 00 0A 00 00 F9 C7
控制第十二路开	FE 05 00 0B FF 00 E9 F7
控制第十二路关	FE 05 00 0B 00 00 A8 07
控制第十三路开	FE 05 00 0C FF 00 58 36
控制第十三路关	FE 05 00 0C 00 00 19 C6
控制第十四路开	FE 05 00 0D FF 00 09 F6
控制第十四路关	FE 05 00 0D 00 00 48 06
控制第十五路开	FE 05 00 0E FF 00 F9 F6
控制第十五路关	FE 05 00 0E 00 00 B8 06

控制第十六路开	FE 05 00 0F FF 00 A8 36
控制第十六路关	FE 05 00 0F 00 00 E9 C6

5、指令详解

5.1、继电器输出

控制 1 路继电器(以第一路开为例,其他通道参照本例),任意一个字节变动,CRC 校验位会随之变动。

发送码: FE 05 00 00 FF 00 98 35

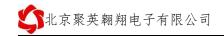
字段	含义	备注
FE	设备地址	这里为广播地址
05	05 指令	单个控制指令
00 00	地址	要控制继电器寄存器地址
FF 00	指令	继电器开的动作
98 35	CRC16	前 6 字节数据的 CRC16 校验和

继电器卡返回信息:

返回码: FE 05 00 00 FF 00 98 35

字段	含义	备注
FE	设备地址	这里为广播地址
05	05 指令	单个控制指令
00 00	地址	要控制继电器寄存器地址
FF 00	指令	继电器开的动作
98 35	CRC16	前 6 字节数据的 CRC16 校验和

5.2、继电器状态


查询 16 路继电器 FE 01 00 00 00 10 29 C9

字段	含义	备注
FE	设备地址	这里为广播地址
01	01 指令	查询继电器状态指令
00 00	起始地址	要查询的第一个继电器寄存器地址
00 10	查询数量	要查询的继电器数量
29 C9	CRC16	前 6 字节数据的 CRC16 校验和

继电器卡返回信息:

FE 01 02 00 00 AD E8

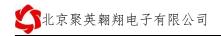
字段	含义	备注
FE	设备地址	
01	01 指令	返回指令:如果查询错误,返回 0x81
02	字节数	返回状态信息的所有字节数。1+(n-1)/8

00	查询的状态	返回的继电器状态。
00		Bit0:第一个继电器状态
		Bit1:第二个继电器状态
		0 0 0 0 0 0
		Bit16:第十六个继电器状态
AD E8	CRC16	前 5 字节数据的 CRC16 校验和

5.3、闪开闪闭指令

闪开闪闭指令解析

闪开发送码: FE 10 00 03 00 02 04 00 04 00 0A 00 D8 闪断发送码: FE 10 00 03 00 02 04 00 02 00 14 21 62


字段	含义	备注
FE	设备地址	
10	10 指令	查询输入寄存器指令
00 03	继电器地址	要控制的器地址
00 02	控制命令数	要对继电的命令个数
	量	
04	字节数	控制信息命令的的所有字节数。1+(n-1)/8
00 04 或 00 02	指令	00 04 为闪开指令 00 02 为闪闭命令
00 0A	间断时间	00 0A 为十六进制换为十进制则为 10 间隔时
		间为 (0.1 秒*10)
00 D8	CRC16	校验方式

返回码: FE 10 00 03 00 02 A5 C7

字段	含义	备注
FE	设备地址	
10	10 指令	返回指令:如果查询错误,返回 0x82
00 03	设备地址	查询设备的地址
00 02	接收命令数	设备接受的命令个数
A5 C7	CRC16	校验位

指令列表

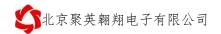
闪闭指令	RTU 格式(16 进制发送)
控制1路	FE 10 00 03 00 02 04 00 04 00 0A 41 6B
控制 2 路	FE 10 00 08 00 02 04 00 04 00 0A 00 D8
控制 3 路	FE 10 00 0D 00 02 04 00 04 00 0A C0 E7
控制 4 路	FE 10 00 12 00 02 04 00 04 00 0A 81 AB
控制 5 路	FE 10 00 17 00 02 04 00 04 00 0A 41 94
控制 6 路	FE 10 00 1C 00 02 04 00 04 00 0A 00 27
控制 7 路	FE 10 00 21 00 02 04 00 04 00 0A C2 AA
控制 8 路	FE 10 00 26 00 02 04 00 04 00 0A 83 4C
控制9路	FE 10 00 2B 00 02 04 00 04 00 0A 42 D5
控制 10 路	FE 10 00 30 00 02 04 00 04 00 0A 02 6A
控制 11 路	FE 10 00 35 00 02 04 00 04 00 0A C2 55

控制 12 路	FE 10 00 3A 00 02 04 00 04 00 0A 82 15
闪断指令	
控制1路	FE 10 00 03 00 02 04 00 02 00 0A A1 6A
控制 2 路	FE 10 00 08 00 02 04 00 02 00 0A E0 D9
控制 3 路	FE 10 00 0D 00 02 04 00 02 00 0A 20 E6
控制 4 路	FE 10 00 12 00 02 04 00 02 00 0A 61 AA
控制 5 路	FE 10 00 17 00 02 04 00 02 00 0A A1 95
控制 6 路	FE 10 00 1C 00 02 04 00 02 00 0A E0 26
控制7路	FE 10 00 21 00 02 04 00 02 00 0A 22 AB
控制 8 路	FE 10 00 26 00 02 04 00 02 00 0A 63 4D
控制9路	FE 10 00 2B 00 02 04 00 02 00 0A A2 D4
控制 10 路	FE 10 00 30 00 02 04 00 02 00 0A E2 6B
控制 11 路	FE 10 00 35 00 02 04 00 02 00 0A 22 54
控制 12 路	FE 10 00 3A 00 02 04 00 02 00 0A 62 14
控制 13 路	FE 10 00 3F 00 02 04 00 02 00 0A A2 2B
控制 14 路	FE 10 00 44 00 02 04 00 02 00 0A E4 BC
控制 15 路	FE 10 00 49 00 02 04 00 02 00 0A 25 25
控制 16 路	FE 10 00 4E 00 02 04 00 02 00 0A 64 C3

5.5、全开全关指令

全开全关指令解析

全开发送码: FE OF OO OO OO 10 O2 FF FF A6 64


全断发送码: FE OF OO OO OO 10 O2 OO OO A7 D4

其中FF FF 为全开全关指令,为二进制转换为 16 进制,2 进制中 1 代表吸合,0 代表断开,11111111 11111111 为全开,00000000 00000000 为全断,每8 路为一个字节,起始为右侧开始,如1、5、8、10、12、16 通道打开,其他关闭,则1.5.8 为 10010001, 16 进制为 91 ,10, 12, 16 为 10001010, 16 进制为 8A,全部开关指令为 91 8A

字段	含义	备注
FE	设备地址	
0F	0F 指令	返回指令:如果查询错误,返回 0x82
00 00	起始地址	
00 10	控制数量	控制的继电器数量
02	字节数	发送命令字节数
FF FF (或 00 00)	全开全关命令	FF FF 全开命令
		00 00 全关命令
A6 64 (或 A7 D4)	CRC16	校验位

全断全开返回码: FE OF OO OO OO 10 40 08

字段	含义	备注
FE	设备地址	
0F	0F 指令	返回指令: 如果查询错误,返回 0x82

00 00	起始地址	
00 10	数量	返回信息的继电器数量
40 08	CRC16	校验位

一条指令控制多个继电器输出通道动作:

使用写多个寄存器功能码: 16 功能码(16 进制: 0x10);

- ▶ 保持寄存器 1050~1051: 对应位写"1"继电器打开 写"0"忽略;
- ▶ 保持寄存器 1052~1053: 对应位写"1"继电器关闭 写"0"忽略;
- ▶ 保持寄存器 1054~1055: 对应位写"1"继电器取反 写"0"忽略。

1、继电器打开

举例: FE 10 04 1A 00 02 04 20 20 00 00 79 01 继电器 6 和继电器 14 打开,其它忽略:

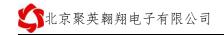
举例: FE 10 04 1A 00 02 04 1C 00 00 00 74 9B 继电器 11、继电器 12、继电器 13 打开, 其它忽略;

举例: FE 10 04 1A 00 02 04 00 0F 00 00 43 08 继电器 1~4 打开, 其它忽略;

指令内容	说明
FE	设备地址,代表 10 进制广播地址 254
10	写多个寄存器的功能码
04 1A	1050 寄存器
00 02	写入寄存器地址的长度
04	具体控制指令的长度
00	9-16 路输出具体状态指令
0F	1-8 路输出具体状态指令(继电器 1-4 打开)
	2 进制: 00001111;
	16 进制: 0F
00	25-32 路输出具体状态指令
00	17-24 路输出具体状态指令
43 08	CRC16 校验位

设备返回指令: FE 10 04 1A 00 02 75 30

2、继电器关闭


举例: FE 10 04 1C 00 02 04 20 20 00 00 F9 2B 继电器 6、继电器 14 关闭,其它 忽略:

举例: FE 10 04 1C 00 02 04 1C 00 00 00 F4 B1 继电器 11、继电器 12、继电器 13 关闭, 其它忽略:

举例: FE 10 04 1C 00 02 04 00 89 00 00 22 CB 继电器 1、继电器 4、继电器 8 关闭, 其它忽略;

举例: FE 10 04 1C 00 02 04 00 0F 00 00 C3 22 继电器 1~4 关闭, 其它忽略;

指令内容	说明
FE	设备地址,代表 10 进制广播地址 254
10	写多个寄存器的功能码
04 1C	1052 寄存器

00 02	写入寄存器地址的长度
04	具体控制指令的长度
00	9-16 路输出具体状态指令
0F	1-8 路输出具体状态指令(继电器 1-4 打开) 2 进制: 00001111; 16 进制: 0F
00	25-32 路输出具体状态指令
00	17-24 路输出具体状态指令
C3 22	CRC16 校验位

设备返回指令: FE 10 04 1C 00 02 95 31

3、继电器取反

举例: FE 10 04 1E 00 02 04 00 0F 00 00 42 FB 继电器 1~4 取反, 其它忽略;

第一次发:继电器 1~4 打开,其它忽略;第二次发:继电器 1~4 关闭,其它忽略;

指令内容	
FE	设备地址,代表 10 进制广播地址 254
10	写多个寄存器的功能码
04 1E	1054 寄存器
00 02	写入寄存器地址的长度
04	具体控制指令的长度
00	9-16 路输出具体状态指令
0F	1-8 路输出具体状态指令(继电器 1-4 打开)
	2 进制: 00001111;
	16 进制: 0F
00	25-32 路输出具体状态指令
00	17-24 路输出具体状态指令
42 FB	CRC16 校验位

设备返回指令: FE 10 04 1E 00 02 34 F1

4、继电器打开关闭

举例: FE 10 04 1A 00 04 08 00 20 00 00 00 02 00 00 5E 5B 继电器 6 打开,同时继电器 2 关闭,其它忽略;

举例: FE 10 04 1A 00 04 08 00 0F 00 00 00 F0 00 00 21 6A 继电器 1~4 打开,同时继电器 5~8 关闭,其它忽略;

77E C III C C 7 (14) 7 (C C C C C C C C C C C C C C C C C C			
指令内	说明	备注	
容			
FE	设备地址,代表 10 进制广播地址 254		
10	写多个寄存器的功能码		
04 1A	1050 寄存器		
00 04	写入寄存器地址的长度		

08	具体控制指令的长度	
00	9-16 路输出具体状态指令	1~32 路打开状态
0F	1-8 路输出具体状态指令(继电器 1-4 打开)	
	2 进制: 00001111;	
	16 进制: 0F	
00	25-32 路输出具体状态指令	
00	17-24 路输出具体状态指令	
00	9-16 路输出具体状态指令	1~32 路关闭状态
0F	1-8 路输出具体状态指令(继电器 5-8 关闭)	
	2 进制: 11110000;	
	16 进制: F0	
00	25-32 路输出具体状态指令	
00	17-24 路输出具体状态指令	
21 6A	CRC16 校验位	

设备返回指令: FE 10 04 1A 00 04 F5 32

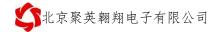
十、常见问题与解决方法

1、232 通讯,设备控制无响应,不动作

设备与上位机进行通信使用的是 232 直连线。即 RX 对 RX, TX 对 TX, GND 对 GND

2、继电器只能开不能关

读取地址是否读到的是实际设备地址,调试信息栏内是否有返回指令,返回指令是否正确,如果读取地址失败,没有返回指令或返回指令异常,检查通讯线和通讯转换器


3、485 总线上挂有多个设备时,每个设备地址不能一样, 不能使用广播地址 254 来进行通讯。

广播地址在总线上只有一个设备时可以使用,大于1个设备时请以拨码开关区分地址来 控制,否则会因为模块在通信数据的判断不同步上导致指令无法正确执行。

十一、技术支持联系方式

联系电话: 4006688400、010-82899827/1-803

联系 QQ: 4006688400

软件下载

JYDAM 调试软件

https://www.juyingele.com.cn/software/software/JYDAM%E8%B0%83%E8%AF%95%E8%BD%AF%E4%BB%B6.rar

以太网配置软件

https://www.juyingele.com.cn/software/jynet/%E4%BB%A5%E5%A4%AA%E7%BD% 91%E9%85%8D%E7%BD%AE%E8%BD%AF%E4%BB%B6.rar

(二维码使用浏览器扫描)

JYDAM 调试软件

官网: www.juyingele.com

以太网配置软件

欢迎官网聚英公司微信公众号查看最新科技,实时动态

